Plasmid interference for curing antibiotic resistance plasmids in vivo
نویسندگان
چکیده
Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.
منابع مشابه
IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates
The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasm...
متن کاملMultiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids
BACKGROUND & OBJECTIVES The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR), consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids) among the clinical isolates of A. baumannii. In addition, the study was performed to ch...
متن کاملA study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harbouring multiple plasmids.
BACKGROUND & OBJECTIVES Antibiotic resistant bacterial nosocomial infections are a leading problem in intensive care units (ICU). Present investigation was undertaken to know antibiotic resistance in Acinetobacter baumannii and some other pathogens obtained from clinical samples from ICU causing nosocomial infections. Special emphasis was given on plasmid mediated transferable antibiotic resist...
متن کاملPlasmid associated antibiotic resistance in Vibrios isolated from coastal waters of Kerala
The present study was aimed to detect the plasmid profile, the role of plasmid associated multiple antibiotic resistance of Vibrios isolated from coastal waters of Kerala. The isolated plasmids from antibiotic resistant Vibrios were tested for the presence of integrons using polymerase chain reaction (PCR) to elucidate the presence of plasmid borne integron, a key element in horizontal gene tra...
متن کاملAntibacterial & antiplasmid activities of Helicteres isora L.
BACKGROUND & OBJECTIVES The multiple drug resistance (MDR) is a serious health problem and major challenge to the global drug discovery programmes. Most of the genetic determinants that confer resistance to antibiotics are located on R-plasmids in bacteria. The present investigation was undertaken to investigate the ability of organic extract of the fruits of Helicteres isora to cure R-plasmids...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017